If it's not what You are looking for type in the equation solver your own equation and let us solve it.
392=x^2
We move all terms to the left:
392-(x^2)=0
We add all the numbers together, and all the variables
-1x^2+392=0
a = -1; b = 0; c = +392;
Δ = b2-4ac
Δ = 02-4·(-1)·392
Δ = 1568
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{1568}=\sqrt{784*2}=\sqrt{784}*\sqrt{2}=28\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-28\sqrt{2}}{2*-1}=\frac{0-28\sqrt{2}}{-2} =-\frac{28\sqrt{2}}{-2} =-\frac{14\sqrt{2}}{-1} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+28\sqrt{2}}{2*-1}=\frac{0+28\sqrt{2}}{-2} =\frac{28\sqrt{2}}{-2} =\frac{14\sqrt{2}}{-1} $
| -5y+6=-44 | | 12+9y=48 | | -18=-2k | | 4+5x=3+6x | | x^2−6x−20=7 | | 3000=1500(1+(.0433/12))^x | | 2x–18–7x=–5x+ | | x=15x=10 | | –12=–4(p+4) | | 20–35d=29 | | 3h+7-1=42 | | 7a+8=12+38a= | | 4=z–5 | | 16=h-13 | | 10(-7n-1=-150 | | x12=36 | | 6p+5p=88-22p= | | 2=z–9 | | 7x+17x-6=6(4x+9) | | 4x+12=18+2x | | 270=10f | | 19.x/2-5=3 | | x+700=5x+70 | | 12+1/4x-15=18-1/2x | | 2k=60 | | –7d=1−6d | | 7(6x+5)=119 | | 88.8=16t^2 | | 16x+16=1x+13 | | 3x➗4+2=11 | | (3x+6)+x+(3x-18)=180 | | u/3-9=13 |